Низкоомный омметр из мультиметра своими руками. Принципиальные схемы - пользуемся стрелочным прибором. Способы электрических замеров

Токи, напряжения и сопротивления радиолюбитель измеряет обычно одним комбинированным прибором - авометром. Такой прибор совмещает в себе амперметр, миллиамперметр, вольтметр и омметр, основы построения которых рассмотрены в предыдущем разделе книги.

Какие виды и пределы измерений должен обеспечивать такой комбинированный прибор?

Налаживая или ремонтируя радиоаппаратуру, радиолюбителю приходится измерять постоянные и переменные напряжения от долей вольта до нескольких сотен вольт. Если же речь идет только о транзисторных конструкциях, то в этом случае верхний предел измерений напряжений не превышает, как правило, 20.. 30 В.

Постоянные токи приходится измерять в пределах от долей миллиампера до сотен миллиампер или даже нескольких ампер, если, например, имеют дело с мощными транзисторами. Измерять переменные токи звуковой частоты приходится значительно реже. Поэтому описываемым авометром не предусмотрено измерение переменных токов.

Наконец, сопротивления, с измерением которых радиолюбителю приходится сталкиваться^ могут быть в пределах от единиц Ом до нескольких мегаом.

Описываемым авометром можно измерять: постоянный ток до 500 мА (пределы измерений: 1, 10, 100 и 500 мА), постоянные напряжения до 500 В (пределы: 1, 10, 100 и 500 В), переменные напряжения до 500 В (1, 10, 100 и 500 В) и сопротивления от 1 Ом до 5 МОм (пределы: 1 Ом...5 кОм, 10 Ом.., 50 кОм, 100 Ом...500 кОм и 1 кОм...5 МОм). Относительное входное сопротивление вольтметра постоянного тока-около 10 кОм/В.

Принципиальная схема авометра изображена на рис. 21, а. Чтобы легче разобраться в работе прибора, отдельно показаны его упрощенные схемы, используемые при измерении постоянного тока (рис. 21,6), постоянных напряжений (рис. 21, в), переменных напряжений (рис. 21, г) и сопротивлений (рис. 21, д).

Измерительным прибором авометра служит микроамперметр М24 (РА1) с током полного отклонения стрелки 1я=100 мкА и сопротивлением рамки Rh= = 645 Ом. Для микроамперметра с другими значениями 1и и RB сопротивления всех резисторов авометра надо, естественно, перерассчитать.

При измерении постоянного тока параллельно микроамперметру подключают универсальный шунт, состоящий из резисторов R2 - R9 с общим (расчетным) сопротивлением 4355 Ом. Отводы от точек соединения резисторов R2 и R3, R4 и R5, R6 и R7 не используются (они нужны при измерении сопротивлений), поэтому на рис. 21,6 эти элементы шунта заменёны резисторами R2+R3, R4+R5 и R6+R7.

При измерении постоянных и переменных напряжений универсальный шунт отключается, что необходимо для сохранения высокого входного сопротивления вольтметра. В зависимости от рода (постоянное или переменное) и значения измеряемого напряжения последовательно с микроамперметром включается один из добавочных резисторов R14 -R17 (рис. 21, в) или RIO -R13 (рис. 21, г).

Вольтметр переменного тока отличается от вольтметра постоянного тока наличием в нем диодов VD1, VD2’ и сопротивлениями добавочных резисторов, которые, как указывалось ранее, меньше сопротивлений соответствующих резисторов вольтметра постоянного тока примерно в 2,2 раза.

Прибор для измерения сопротивлений заметно отличается от простейших омметров, схемы которых были рассмотрены в предыдущем разделе (см. рис. 13). В этом приборе при измерении сопротивлений параллельно микроамперметру подключается универсальный шунт, состоящий из резисторов R2, R3-fR4, R5+ -fR6 и R7+R8+R9. Сопротивления резисторов шунта и добавочных резисторов R18 - R21 подобраны так, что входное сопротивление омметра R вх НЭ ВТОрОМ пределе («ХЮ»), в 10 раз больше RBX первого предела («XI»), равного 50 Ом, на третьем («ХЮО»)-в 10 раз больше RBX второго предела, а на четвертом («ХЮ00»)- в 10 раз больше RBX третьего предела. Функции шунта омметра выполняют резисторы универсального шунта микроамперметра. Но отводы от точек соединения резисторов R3 и R4, R5 и R6, R7 - R9 при измерении сопротивлений не используются.

На первых трех пределах омметра («X1«ХЮ», «ХЮО») к универсальному шунту подключены цепи, каждая из которых состоит из одного элемента 332 (Ql, G2 или G3) и резистора (R19, R20 или R21). Для измерений на четвертом пределе («ХЮ00») к омметру через гнезда XS1, XS2 подключают внешний источник питания напряжением 9 В. Им могут быть две батареи 3336JI, соединенные последовательно, или блок питания, входящий в комплект описываемых приборов.

Вся коммутация в авометре (подключение и отключение универсального шунта, резистора R1, с помощью которого устанавливают на нуль стрелку прибора при измерении сопротивлений) осуществляется с помощью одного переключателя SA1. В положении «Q» к микроамперметру подключается универсальный шунт и резистор R1, а в положении «гпА»-только универсальный шунт. Диоды VD1 и VD2 постоянно подключены к микроамперметру, но, поскольку их обратное сопротивление составляет сотни килоом, они практически не оказывают на него шунтирующего действия. Элементы Gl - G3 омметра при измерении тока и напряжения -не отключаются от шунта, что также сделано с целью упрощения коммутации авометра.

Описываемый прибор - универсальный. И не только потому, что с его помощью можно измерять ток, напряжение и сопротивление, но еще и потому, что его микроамперметр может быть использован в некоторых других измерительных приборах радиолюбительской лаборатории. С этой целью на переднюю панель авометра выведены гнезда XS3 и XS4 («100 мкА»), соединенные непосредственно с зажимами микроамперметра. Надо только помнить, что при таком использовании микроамперметра переключатель SA1 должен находиться в положении «V».

Конструкция и детали. Общий вид авометра показан на рис. 22, а конструкция его корпуса и размещение в нем деталей даны на рис. 23. Несущим элементом конструкции является корпус 2. На его передней стенке с внутренней стороны закреплен микроамперметр 5. Корпус последнего имеет спереди выпуклость высотой около 3 мм, поэтому к передней стенке он крепится не непосредственно, а через прокладку 4. На передней стенке авометра закреплены также две колодки 15 с гнездами XS5 - XS20, колодка 12 с гнездами XS3, XS4 и XS21, переменный резистор R1 («Уст. 0») и переключатель вида измерений SA1. Для крепления колодок с гнездами использованы винты МЗХ8 с потайной головкой. Уголки 7 и 13 для крепления крышки 6 соединены с корпусом заклепками 8, а ножки 10 - заклепками 9.

Монтажная плата 16 (на рис. 23 показана штриховыми линиями) с резисторами R2 - R21, диодами VD1, VD2 и элементами Gl - G3 закреплена винтами МЗХ28 с потайными головками. Винты пропущены через трубчатые стойки 11 и ввинчены в средние резьбовые отверстия колодок.

Надписи, поясняющие назначение ручек управления и гнезд, выполнены на полосах цветной бумаги и прикрыты накладкой 1 из прозрачного бесцветного органического стекла. Для крепления накладки к передней стенке корпуса использованы гайки переменного резистора и переключателя, один из винтов крепления колодки 12 и два винта 3 (М2Х5), которые ввинчены с обратной стороны стенки. Колодка 14 с гнездами XS1 и XS2 закреплена на уголке 13 одним винтом МЗХ6.

Корпус, крышка и уголки изготовлены из листового алюминиевого сплава АМц-П; пригоден также мягкий дюралюминий. Разметка передней стенки корпуса показана на рис. 24.

Изготавливая крышку, надо добиваться сопряжения ее с корпусом, т. е. так подогнать размеры, чтобы она не выступала за габариты корпуса.

Наиболее ответственные детали авометра - гнезда. От тщательности их изготовления во многом зависит надежность работы прибора. Конструктивно все гнезда одинаковы. Для удобства изготовления они объединены в четыре группы, каждая из которых смонтирована на отдельной колодке. Устройство одной из таких групп показано на рис. 25. Каждое гнездо (рис. 25, а) образовано отверстием в колодке 15 и контактом 20, закрепленным на ней винтом 21. Форма контакта такова, что его нижняя (по рисунку) часть наполовину перекрывает отверстие под штепсель, поэтому при подключении эта часть контакта поднимается (рис. 25, б) и давит на штепсель, благодаря чему обеспечивается надежный электрический контакт.

Колодки 12, 14 и 15 (рис. 25, в) изготавливают из листового гетинакса, текстолита, стеклотекстолита или органического стекла. Всего для авометра нужно изготовить две колодки 15 и по одной колодке 12 и 14.

Для контактов (их потребуется 21 шт.) надо использовать твердую латунь (например, JIC59-1) или бронзу толщиной 0,5 мм.

Уголки 7 и 13 (см. рис. 26) изготавливают из того же материала, что и корпус авометра, ножки 10 - из любой пластмассы подходящей толщины. Штеп-сели 23 и щупы 26 вытачивают из латунного прутка диаметром 4 мм, а их корпуса 24 и 25 - из текстолита, органического стекла или другого изоляционного материала. Более подробно о технологии изготовления деталей корпуса, гнезд и некоторых других деталей, используемых не только для авометра, говорится в разделе «Технологические советы».

ками 19. Стойки 11, создающие необходимый зазор между монтажной платой и гнездовыми колодками 15, изготовлены из органического стекла (можно применить гетинакс или текстолит). Их наружный диаметр 6, а длина - 20 мм.

Резисторы R4 и R6 - R9 универсального шунта изготовлены из манганино-эого провода в эмалевой и шелковой изоляции (ПЭШОММ, ПЭГОМТ). Для резисторов R4, R6 и R7 надо использовать провод диаметром 0,08...0,1 мм, а Для резисторов R8 и R9 - 0,15...0,2 мм. Пригодны, разумеется, другие высокоомные провода, например, из константана. Каркасами служат резисторы МЛТ-0,5 сопротивлением не менее 200 кОм.

Длину провода, необходимую для получения заданного сопротивления, можно определить с помощью моста для измерения сопротивлений или образцового омметра. Чтобы при калибровке шкалы прибора можно было более точно подобрать сопротивления резисторов, длину их проводов увеличивают на 5...10%.

Резистор R1 может быть как проволочным, так и непроволочным (например, СП-I). Важно лишь, чтобы его сопротивление было 2...3 кОм, а габариты не превышали размеров резистора СП-1.

Остальные резисторы, примененные в авометре,- МЛТ-0,5. Для упрощения налаживания авометра их следует взять с несколько большим (примерно на

10...15%) сопротивлением, чем указано на принципиальной схеме. Тогда при калибровке легко подобрать нужное сопротивление, подключая параллельно им резисторы сопротивлением в 7...10 раз большим. Можно поступить и по-другому: каждый отдельный резистор. заменить двумя-тремя соединенными последовательно и при калибровке подбирать резисторы меньшего сопротивления. Так, резистор R2 можно составить из двух резисторов сопротивлением 1,5 кОм и 240 Ом, резистор R3 - из резисторов сопротивлением 2 кОм и 110 Ом, R14 - из резисторов сопротивлением 9,1 кОм и 270 Ом и т. д.

Переключатель вида измерений SA1 - тумблер ВТЗ на три положения и два направления. Можно использовать любой другой переключатель, обеспечивающий Необходимую коммутацию, например галетный, но в этом случае придется несколько увеличить размеры авометра.

Градуировка. Полностью смонтировав авометр, проверяют правильность всех соединений и только после этого приступают к градуировке его шкал. Начинают ее с калибровки шкалы постоянных токов по схеме, показанной на рис. 28, а. Эдесь GB - батарея, составленная из трех элементов 373, РАг - градуируемый Миллиамперметр, РАо - образцовый прибор, например промышленный миллиамперметр класса 0,2.„0,6 или авометр в режиме измерения тока, Ra - проволочный переменный резистор сопротивлением 50...100 Ом, R6 - резистор СП-I сопротивлением 5...10 кОм, SA - выключатель любого типа. Перед калибровкой резистор Ra полностью вводят (движок в верхнем - по схеме - положении), а Re - выводят. Переключатель SA1 авометра устанавливают в положение «шА»,

штепсели соединительных проводов вставляют в гнезда «Общ.» и «500 мА». Затем, плавно изменяя сопротивление резистора Ra, устанавливают по шкале образцового прибора ток 500 мА и сравнивают его с показанием измерительного прибора авометра. Если сопротивление резистора R9 универсального шунта больше расчетного, то стрелка налаживаемого прибора уйдет за последнюю отметку шкалы. Отматывая провод с резистора R9 и следя за показаниями образцового миллиамперметра, стрелку устанавливают на последнюю отметку.

После этого питание выключают, снова полностью вводят резистор Ra и переставляют штепсель соединительного провода в гнездо «100 мА» налаживаемого прибора. Вновь включив питание и изменяя сопротивление резистора Ra, устанавливают стрелку образцового прибора на отметку 100 мА и, подбирая сопротивление резистора R8, добиваются отклонения стрелки калибруемого прибора точно до последней отметки шкалы.

Аналогично калибруют шкалу прибора и на остальных пределах измерения постоянного тока (10 и 1 мА). Только при этом подбирают сопротивления резисторов R6 и R4, а ток в измерительной цепи регулируют переменным резистором Re.

Калибровку прибора необходимо повторить в таком же порядке, чтобы внести в шунт поправки, компенсирующие изменение сопротивлений резисторов R9, R8, R6 и R4. При необходимости сопротивления этих резисторов подгоняют еще раз, чтобы на всех пределах измерений показания налаживаемого и образцового миллиамперметров стали одинаковыми.

Шкалу вольтметра постоянных напряжений калибруют по схеме, показанной на рис. 28, б. Здесь GB - батарея, составленная из трех соединенных последовательно батарей 3336Л, R - переменный резистор сопротивлением 2... 3 кОм, PUr - градуируемый вольтметр, PU0 - образцовый вольтметр. Перед калибровкой переключатель SA1 авометра переводят в положение «V», а соединительные провода включают в гнезда-«Общ.» и «1 В». Образцовый вольтметр переключают на такой же или ближайший больший предел измерений, а движок переменного резистора R устанавливают в нижнее (по схеме) положение. После этого включают питание и, плавно перемещая движок резистора R, устанавливают стрелку образцового вольтметра на отметку 1 В. Сопротивление резистора R14 калибруемого вольтметра подбирают таким, чтобы стрелка микроамперметра установилась точно на последнюю отметку шкалы.

Точно так же калибруют вольтметр и на остальных пределах измерений, подбирая резисторы R15 (предел 10 В), R16 (предел 100 В) и R17 (предел 500 В). На последних двух пределах вместо батареи QB включают выпрямитель с соответствующим выходным напряжением, а в измерительную цепь включают переменный резистор сопротивлением 510...680 кОм (вместо

Шкалы постоянного тока и напряжения практически линейны, поэтому шкала микроамперметра, имеющая оцифрованные отметки 0, 10, 20, 30, ..., 100, может использоваться при измерении любых постоянных токов и напряжений. Изменяется только цена делений. Так, на пределах 1 и 10 мА (В) показания, отсчитанные по шкале микроамперметра, надо делить соответственно на 100 и 10, а на пределе 500 мА (В) - умножать на 5.

Шкалы переменных напряжений нелинейны. Поэтому кроме калибровки последней отметки на каждом пределе измерений придется дополнительно наносить на шкалу и все оцифровываемые отметки (обычно не более девяти).

Измерительная цепь для градуировки шкал переменных напряжений такая ке, как и при калибровке шкалы постоянных напряжений (рис. 28, б), только вместо батареи или выпрямителя используют автотрансформатор или трансформатор питания с обмотками на 5, 10 и 250...500 В, а в качестве образцового прибора - вольтметр переменного тока. Установив штепсель соединительного провода градуируемого вольтметра в гнездо «1 В», резистором R устанавливают по шкале образцового прибора напряжение 1 В. Затем, подбирая резистор R10, устанавливают стрелку градуируемого вольтметра на последнюю отметку шкалы. После этого градуируют шкалу вольтметра, т. е. наносят на нее риски, соответствующие напряжениям 0,9; 0,8; 0,7 Вит. д., измеренным образцовым прибором. Если деления шкалы получились очень неравномерными (по сравнению со шкалой постоянных напряжений), следует заменить диоды VD1, VD2, после чего градуировку повторить.

10 В, подбирают резистор R11 и градуируют шкалу вольтметра через 1 В. Аналогично градуируют шкалу предела 100 В (но уже через 10 В), предварительно подобрав резистор R12.

Если автотрансформатор или повышающая обмотка трансформатора не обеспечивают напряжения 500 В, откалибровать последний предел можно по средней отметке (50 В) шкалы предела 100 В. В этом случае, переставив щуп градуируемого прибора в гнездо «500 В», устанавливают по образцовому вольтметру напряжение 250 В и подбирают такое сопротивление резистора R13, при котором стрелка микроамперметра отклоняется точно до отметки 50 В.

Поскольку шкалы разных пределов переменных напряжений практически совпадают и отличаются только ценой делений, при измерениях можно пользоваться одной шкалой, умножая (или деля) показания, отсчитанные по шкале Прибора, на определенное число. Так, если на шкалу нанесены отметки от 0 до 16, то при работе на первом пределе («1 В») показания прибора надо делить на 10, а на третьем и четвертом пределах - умножать соответственно на 10 и 50.

В последнюю очередь подбором резисторов R18 -R21 подгоняют входные сопротивления омметра на разных пределах измерения. Для этого переключатель SA1 авометра переводят в положение «£2», штепселя соединительных проводов вставляют в гнезда «-Общ.» и «XI» и, соединив щупы друг с другом, резистором R1 устанавливают стрелку прибора на нулевую отметку шкалы омметра (т. е. на последнюю отметку шкалы микроамперметра). Затем к щупам прибора подключают резистор, сопротивление которого равно входному сопротивлению этого предела измерений (50 Ом). Резистор такого сопротивления можно составить из двух резисторов сопротивлением, например, 30 и 20 или 39 и

11 Ом, соединенных последовательно. Подбором сопротивления резистора R21 стрелку микроамперметра устанавливают точно на середину шкалы.

Аналогично подгоняют входные сопротивления омметра на остальных пределах измерений. На втором пределе («ХЮ») к входу омметра подключают образцовый резистор сопротивлением 500 Ом, на третьем («ХЮ0»)-резистор сопротивлением 5 кОм, на четвертом («X1000») - резистор сопротивлением 60 кОм. На последнем пределе к омметру через гнезда XS1 и XS2 необходимо подключить батарею или выпрямитель с выходным напряжением 9 В.

Образцовые резисторы, обеспечивающие заданные входные сопротивления омметра для разных пределов измерения, следует составлять из прецизионных

отклонением от номинала не более ±5%."

Шкалу омметра лучше всего градуировать расчетным путем, пользуясь формулой, приведенной на с. 16. Поскольку шкала общая для всех пределов из-мерений (изменяется только цена ее делений), градуировку производят на каком-либо одном пределе, например первом («XI»)- Диапазон измерений на этом пределе - примерно от 5 (0,1 R„x) до 500 Ом (IORbx). Считаем, что шкала микроамперметра, используемого в авометре, имеет 100 делений. Задаемся со-противлением Rx = 5 Ом. Следовательно, отклонение стрелки прибора до 90-го деления шкалы будет соответствовать сопротивлению Rx=5 Ом.

Точно так же рассчитывают отметки шкалы, соответствующие измеряемым сопротивлениям 10, 20, 30 и т. д. до 100 Ом, а затем через каждые 100 Ом до 500 Ом. Участки между соседними отметками делят на несколько частей, что облегчает отсчет промежуточных значений измеряемых сопротивлений. Отметка сопротивления, равного Rsx данного предела измерений, будет точно посередине шкалы.

Шкалу омметра, входные сопротивления которого уже подогнаны, можно отградуировать и по образцовым резисторам. Для этого потребуются образцовый омметр или авометр заводского изготовления и переменные резисторы сопротивлением 10...15, 50...100 и 600...800 Ом. Вначале к образцовому омметру присоединяют первый из этих резисторов и по шкале прибора устанавливают сопротивление 5 Ом. Затем, не изменяя положения движка этого резистора, подключают его к градуируемому омметру и на шкале сопротивлений делают отметку, соответствующую сопротивлению 5 Ом. Далее, используя этот и другие переменные резисторы, точно так же наносят на шкалу отметки, соответствующие сопротивлениям до 500 Ом.

Закончив градуировку, шкалу микроамперметра осторожно снимают и вычерчивают дополнительные шкалы переменных напряжений и сопротивлений, пользуясь отметками, нанесенными при градуировке. Дополнительные отметки между оцифрованными точками шкалы переменных напряжений получают путем деления отрезков дуг на равные части. Шкала описанного здесь авометра показана на рис. 29.

Шкалу авометра можно также начертить на листе ватмана в увеличенном масштабе, затем фотографическим способом уменьшить ее до нужных размеров и наклеить на металлическое основание шкалы микроамперметра.

Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.

Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.

Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор . До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора. В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм). На зарубежных схемах «Ом » пишется как «Ohm ».

Для измерения сопротивлений используется прибор, который называется Омметр . Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.

Зато все знают такое понятие как тестер или мультиметр . Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.

На принципиальных схемах омметр обозначается следующим условным графическим обозначением.

Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.

Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.

Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.

Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:

    Короткое замыкание, где его быть не должно.

    Обрыв там, где должна быть замкнутая цепь.

Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.

О стрелочных измерительных приборах…

Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.

Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры. Аво метр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: а мперметр – измеряет силу тока, в ольтметр – измеряет напряжение и о мметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.

Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.

Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.

С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.

Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.

К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.

Преимущество стрелочных приборов.

Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка

Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.

В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.

Взглянем на внутренности цифрового мультиметра.

Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.

Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h 21Э (hFE ) маломощных транзисторов.

Практическая работа с мультиметром DT-830B.

Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.

Пределы измерения омметра выглядят вот так.

На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:

    200 - на этом пределе измеряются сопротивления величиной до 200 Ом;

    2000 - на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);

    20k - на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);

    200k - предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);

    Ну, и наконец, 2000k - предел для измерения сопротивлений до 2 мегаом.

Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда . Там подробно рассказано о сокращённой записи численных величин.

Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.

А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.

У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0 < - т.е. откалибровать прибор. Пределы измерения у приборов такого типа выбираются автоматически.

При любых измерениях касаться руками неизолированных частей щупов очень не рекомендуется. При отсутствии опыта не проводите измерения на аппаратуре находящейся под напряжением питания – это касается замера токов и напряжений.

Для практики измерим сопротивление постоянного резистора, номинал которого заранее известен. Он нанесён на корпус резистора. Все измерения производятся с помощью зажимов типа «крокодил» то есть пальцы рук ни к чему не прикасаются. При этом сопротивление человеческого тела не может зашунтировать измерительную цепь и искажать результаты измерений.

На снимке видно показания прибора: 690 Ом. Номинал данного резистора 680 Ом, то есть погрешность для данного резистора составляет чуть более одного процента.

Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе много­предельные амперметр и вольтметр по­стоянного и переменного тока, омметр, а иногда еще и испытатель маломощ­ных транзисторов.

Принципиальная схема подобного упрощенного измерительного при­бора показана на рис. ниже. Он позволя­ет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и со­противления от 50 Ом до 50 кОм. Пе­реключение видов и пределов измере­ния осуществляется включением одного из щупов в гнезда Гн1-Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пре­делов измерения.

Омметр однопредельный. В него вхо­дят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные рези­сторы R1 «Уст. 0» и R2. Перед изме­рением щупы прибора соединяют, и пе­ременным резистором R1 стрелку мик­роамперметра устанавливают на конеч­ную отметку шкалы, являющуюся ну­лем омметра. Затем щупами касаются выводов резистора, обмотки трансформа­тора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют ре­зультат измерения.

Четырехпредельный вольтметр обра­зуют тот же микроамперметр ИП1 и добавочные резисторы R3-R6. С ре­зистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрел­ки микроамперметра на всю шкалу соответствует напряжению 1 В, с ре­зистором R4-3 В, с резистором R5- 10 В, с резистором R6-30 В.

Миллиамперметр пятипредельный: 0-1, 0-3, 0-10, 0-30 и 0-100 мА. Его образует универсальный шунт составленный из резисторов R7-R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микро­амперметр подключался к шунту, через который течет большая часть измеряе­мого тока, а не наоборот.

Конструкция рекомендуемого комби­нированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рам­ки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредст­венно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1-Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопро­тивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соеди­нением нескольких резисторов. В опи­сываемом приборе каждый из резисто­ров R3 и R6, например, составлен из двух последовательно соединенных ре­зисторов, каждый из резисторов R5 и R11 также из двух резисторов, но со­единенных параллельно.

Калибровка вольтметра и миллиам­перметра заключается в подгонке со­противлений добавочных резисторов и универсального шунта под максималь­ные напряжения и токи соответствую­щих пределов измерения, а омметра - к разметке шкалы по образцовым ре­зисторам.

Калибровку вольтметра производите по схеме, показанной на рис. Па­раллельно батарее Б1 напряжением 13,5 В (или от БП) подключите пе­ременный резистор Rp сопротивлением 2-3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выво­дом,- параллельно соединенные само­дельный калибруемый (V K) и образ­цовый (V 0) вольтметры. Образцовым может быть вольтметр заводского аво­метра. Предварительно движок регу­лировочного резистора поставьте в край­нее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений - до 1 В. Постепенно увеличивая напряжение, по­даваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруе­мого вольтметра не доходит до ко­нечной отметки шкалы, это укажет на то, что сопротивление добавочного ре­зистора R3 оказалось больше, чем на­до, а если уходит за пределы шкалы, то - меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.

Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обя­зательно подавать на вольтметры на­пряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом откло­нение его стрелки на всю шкалу будет соответствовать напряжению 30 В.

Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора - пленочный (СП, СПО) сопротивлением 5-10 кОм и проволочный сопротивле­нием 50-100 Ом. Первый из этих ре­гулировочных резисторов будете ис­пользовать при подгонке резисторов R7-R9, второй - при подгонке рези-, сторов R10 и R11 универсального шунта.

Первым подгоняйте резистор R7 шунта. Для этого соедините последо­вательно (рис. б): образцовый мил­лиамперметр мА 0 , калибруемый мА к, включенный на первый предел изме­рений (до 1 мА), элемент Э1 и пере­менный резистор R p . Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивле­ние регулировочного резистора R v , ус­тановите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиам­перметра была против конечной отмет­ки шкалы.

Аналогично подгоняйте: резистор R8 - на пределе 3 мА, резистор R9- на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 - на пре­деле 30 мА и, наконец, резистор R11- на пределе 100 мА. Подбирая сопро­тивление очередного резистора шунта, уже подогнанные не трогайте - можно сбить калибровку прибора на первых пределах измерения.

Разметить шкалу омметра проще всего с помощью постоянных резисто­ров с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микро­амперметра на конечную отметку шкалы, соответствующую нулю омметра. За­тем разомкните щупы и подключайте к ним резисторы с номинальными со­противлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50-60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае ре­зисторы нужных сопротивлений со­ставляйте из резисторов других номи­налов. Например, резистор сопротивле­нием 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным со­противлениям образцовых резисторов, размечайте (градуируйте) шкалу ом­метра.

Шкалы самодельного комбинирован­ного измерительного прибора должны иметь вид, показанный на рис.

Верхняя из них - шкала омметра, нижняя - общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакиро­ванной бумаге по форме шкалы микро­амперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разби­рать микроамперметр, шкалы самодель­ного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.

В описанном комбинированном при­боре использован микроамперметр на ток I и =300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относи­тельное входное сопротивление вольт­метра не превышает 3,5 кОм/В. Увели­чить относительное входное сопротив­ление и тем самым уменьшить влияние вольтметра на режим в измеряемой це­пи можно только использованием бо­лее чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное вход­ное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.

Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.

Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля.

Литература: В.Г.Борисов. Радиотехнический кружок и его работа.

А.Зотов


П О П У Л Я Р Н О Е:

    Как проверить лампочку, выключатель, предохранитель…?

    Для проверки предохранителя, электрической лампочки накаливания, кипятильника, удлинителя и т.п. совсем необязательно покупать дорогой мультиметр. Можно самому за несколько минут собрать простейший пробник на одной батарейке.

Схемы омметров постоянного тока разделяются на две основные группы.

  • а) Последовательная. Омметры с последовательной схемой применяются для измерения сопротивлений более 1 кОм.
  • б) Параллельная. Омметры с параллельной схемой применяются для измерений сопротивлений не превышают 1 кОм .

В нашем случае нужно измерить сопротивление максимум в 100 Ом, следовательно, будим использовать второй вид схемы. Простейшая схема данного омметра изображена на рисунке 1.1

Рис. 1.1

В параллельных схемах измеряемое сопротивление Rx включается параллельно индуктору. При замкнутых зажимах 1 и 2, через индикатор протекает наибольший ток, который должен быть равен току полного отклонения In.

Для получения необходимой величины тока добавочное сопротивление выбирается равным:

где -добавочное сопротивление, Ом;

U- напряжение источника питания, В;

Сопротивление индикатора, Ом.

Вычисленная величина включает в себя внутреннее сопротивление источника питания. При подключении к омметру сопротивления Rx последнее шунтирует индикатор, уменьшая угол отклонения его стрелки. При короткозамкнутых зажимах индикатор закорачивается и ток через него равен нулю.

Сопротивление между зажимами 1и 2 называют входным сопротивлением омметра Ri. Для простейший схемы

Условие работы омметра могут отличаться от нормальных условий, при которых производилась его градуировка. Это вызывает появление дополнительной погрешности измерений. Поэтому если напряжение питания будут отличатся, то и показания индикатора будут иметь дополнительную погрешность. Для повышения точности в омметрах, где используется однорамочный индикатор, вводится специальный регулятор «бесконечности».

Регулировка «бесконечности» заключается в том, чтобы перед началом измерения при разомкнутых зажимах произвести проверку и установить стрелку индикатора в крайнее положение на против деления с отметкой?.

В омметрах регулировка «бесконечности» производится при помощи магнитного шунта или электрического регулятора «бесконечности».

В нашем приборе будут использовать электрический регулятор «бесконечности», который представляет собой подстроечный резистор подключенный последовательно к источнику питания. Значение электрического регулятора «бесконечности» определяется из формулы

Rвмакс =, (1.4)

где Rвмакс- максимальное сопротивление электрического регулятора «бесконечности», Ом.

Uмакс - максимальное напряжение источника питания, В.

Uмин - минимальное напряжение источника питания, В.

Входное сопротивление параллельной схемы в основном определяется сопротивление индикатора и приближенно можно считать Ri?Ru.

Если входное сопротивление должно превышать сопротивление рамки индикатора, то омметр собирается по схеме рисунка 1.2


Схема 1.2 Омметра с последовательным включением регулятора «бесконечности» при Ri>Ru

В этом случае увеличивается общее сопротивление индикатора Ru+х, что достигается включением последовательно с индикатором сопротивления

Ru = Ru+х -Ru (1.5)

Повышение входного сопротивления омметра в результате увеличения сопротивления цепи индикатора не всегда оказывается выгодным, так как оно может привести к увеличению напряжения питания необходимого для заданной точности.

Если требуемое входное сопротивление меньше сопротивления индикатора, то омметр собирается по схеме рисунка 1.3


Схема1.3 Омметра с последовательным включением регулятора «бесконечности» при Ri

В этой схеме параллельно индикатору включается шунт Rш, уменьшающий общее сопротивление цепи индикатора и шунта Ru+ш до величины

Включение шунта понижает чувствительность индикатора и увеличивает ток в цепи питания, необходимый для отклонения стрелки индикатора на всю шкалу, до значения

где: Iu+ш- ток протекающий через индикатор и шунт, А.

Уменьшение входного сопротивления путем шунтирования и индикатора не требует увеличения напряжения питания.

Для расширения пределов измерений омметров используют совмещение этих двух схем в одном приборе. Переход с одного предела измерений на другой осуществляется посредством измерения входного сопротивления омметра. Используется так же и общий регулятор «бесконечности», это говорит о том, что стрелку индикатора надо настраивать на значение «бесконечности» только один раз, это значение буде сохраняться при переходе на любой предел измерения.

Сопротивление шунта в таких омметрах определяется из условия получения наименьшего входного сопротивления Ri=Riмин. Следовательно,

Максимальное напряжения питания выбирается из условия обеспечения необходимой точности измерений с наибольшим входным сопротивлением Ri=, сила тока полного отклонения в такой схеме будет равна

Домашний мастер при ремонте квартиры своими руками сталкивается с необходимостью подключения светильников, розеток и выключателей по разным схемам. Такая деятельность требует выполнения электрических измерений и знания основных правил безопасности при работе под напряжением.

Наши советы помогут вам оптимально выбрать мультиметр для этих целей и понять основные правила безопасной работы с ним как в бытовой электропроводке, так и для ремонта подключаемых к ней приборов.

В материале статьи сравниваются два типа устройств измерителей: стрелочных аналоговых и цифровых. Это позволит оценить различные технологии замеров, сравнить их возможности, сделать выбор подходящей конструкции.


Назначение

Составное слово мультиметр обозначает своей первой частью «мульти» - много функций, которые выполняет этой прибор, а второй «метр» – измерение электрических величин.


Он позволяет определять:

  • значение действующего напряжения;
  • силу протекающего тока;
  • электрическое сопротивление подключенной цепи;
  • некоторые другие параметры.

Следует учесть, что прибор может иметь другие названия:

  1. авометр, обозначающее сокращение от ампер, вольт, ом измерение;
  2. или тестер, присвоенное первым аналоговым моделям.

На техническом языке его называют прибор многофункциональный измерительный.

Принципы измерения электрических величин

Поясняющая картинка из интернета с человечками призвана объяснить взаимосвязь процессов, происходящих в электрике, которые позволяет анализировать мультиметры любой конструкции.

Напряжение источника в вольтах старается пропихнуть ток в амперах через оказываемое ему противодействие сопротивлением в омах. Для анализа этих трех задач в мультиметр включены 3 отдельных измерительных прибора:

  • амперметр;
  • вольтметр;
  • омметр.

Кратко рассмотрим их функции.

Как работает амперметр

За основу действия аналоговых приборов принята измерительная головка магнитоэлектрической системы.

При протекании через нее электрического тока поворачивается подвижная рамка с противодействующей пружиной и прикрепленной к ним стрелкой, указывающей на шкале его силу в микроамперах - тысячных долях ампера. На таком диапазоне протекают токи через измерительную головку.

Однако амперметр замеряет не доли ампера, а целые и даже значительно большие значения. Такие величины тока способны выжечь все токопроводящие магистрали головки. Чтобы этого не произошло, их ограничивают параллельным подключением калиброванного электрического сопротивления, называемого шунтом.

Принцип шунтирования дополнительным сопротивлением уменьшает величину протекающего через головку тока и делает его пропорциональным входному значению. За счет этого шкалу градуируют в амперах, а не в тысячных его долях.

В цифровых приборах используются датчики токи, которые работают по микропроцессорным технологиям.

Устройство вольтметра

Та же измерительная головка подключается последовательно к добавочным сопротивлениям - токоограничивающим резисторам. Шкала прибора градуируется в вольтах.


Переключатель режимов у амперметра и вольтметра позволяет расширять пределы измерения.

Цифровой вольтметр работает от датчика напряжения.

Конструкция омметра

Принцип замера сопротивления раскрыт в статье о .

Омметр также работает с помощью измерительной головки.

Для этого используется встроенный источник напряжения, который выдает строго эталонную величину. Ее при подготовке омметра к работе необходимо вручную откалибровать.

Замеряемое сопротивление подключается к гнездам прибора. Через него проходит ток, ограничивающийся в зависимости от номинала резистора. Он отклоняет стрелку омметра на величину, пропорциональную значению электрического сопротивления.

Шкала омметра просто градуируется в омах.

Цифровые приборы вычисляют значение сопротивления по результатам информации, получаемой от датчиков тока и напряжения, но работают также от встроенного источника питания. Ручная калибровка им не требуется.

Разновидности мультиметров

Аналоговые приборы

Рассмотрим на примере тестера Ц4324.


Сразу бросаются в глаза многофункциональная шкала в несколько рядов и переключатели режимов с большим рабочим диапазоном.

Заводская схема внутренних соединений представлена на фото ниже.

Более подробно назначение шкалы измерительной головки показано на картинке.

При каждом замере необходимо анализировать положение стрелки на определённом диапазоне, соответствующем роду току и проверяемому сигналу.

Положения центрального переключателя разбиты на три главных сектора (амперметра, вольтметра и омметра) выделенные красными стрелками. При работе следует определять не только диапазон измеряемой величины, но и форму сигнала.

Цифровые приборы

Внутренняя конструкция этого типа мультиметра намного сложнее, а внешние органы выполнены проще для пользователя. В качестве образца выберем одну из типовых моделей с минимальным количеством автоматических настроек.

Вместо стрелочного указателя и сложной шкалы работает дисплей, а положением центрального переключателя можно выбрать все режимы измерения в любом секторе.

Подключение измерительных проводов выполняется к двум гнездам из трех:

  • центральное - общее;
  • левое - используется для замера токов более 10 ампер;
  • правое - во всех остальных случаях.

Способы электрических замеров

Любой мультиметр сам ничего не измеряет. Он показывает только те величины, которые подготовил пользователь в созданном им режиме. Ошибки показаний чаще всего связаны с невнимательной работой человека.

Рассмотрим однотипные операции, которые необходимо выполнять на стрелочном и цифровом мультиметре.

Измерения тестером Ц4324

Замер напряжения

Выбираем соответствующий режим нажатием средней кнопки снизу и выставляем предел измерения больший, чем напряжение у замеряемой батарейки - 3 V.


Потребуется оценить полярность подключения проводов. Если пустить ток в обратном направлении через измерительную головку, то стрелка просто упрется в стопор слева от нуля. Замер не получится.

Для снятия отсчета необходимо выбрать правильно ту шкалу напряжения, на которой стоит знак постоянного тока. Следует учесть ее кратность на соответствующем положении переключателя.

Обращаем внимание, что подобная операция относится к опасной и требует повышенного внимания.


Нажимаем до фиксации правую кнопку снизу со значком «~». Выбираем центральным переключателем соответствующий режим вольтметра и на нем положение 300 V. Только после этого устанавливаем концы в контакты розетки.

Со шкалы снимаем показания 250 V. Методика пользования ею та же, как и в предыдущем случае.

Замер тока

Положение переключателей и работа со шкалой выполняется по предыдущей методике.


Пальчиковая батарейка на 1,5 V выдала на лампочку 6,3 V ток 142 мА.

Замер сопротивления

В этом режиме важно:

  • проверить выставление стрелки на ноль, используя регулятор натяжения пружины измерительной головки, расположенный под стрелкой;
  • установить калиброванную величину источника питания ручкой потенциометра «Установка 0», размещенного в самой нижней части на лицевой стороне;
  • обеспечить .

Для измерения потребуется нажать одновременно две левых кнопки и установить переключатель на значок омов. Отсчет показания по шкале Ω получился 1,5. Такое сопротивление у нити накаливания в холодном состоянии.

Режим измерения сопротивлений мультиметром создан для проверки резисторов и других элементов радиоэлектронных устройств. Он не предназначен для оценки качества изоляции диэлектрического слоя. Мощность источника питания недостаточна для подобного измерения.

Оценку сопротивления изоляции кабелей и проводов выполняют специальными приборами, питающимися от мощных источников: ручных генераторов или бытовой сети 220 либо встроенных преобразователей с комплектом батареек. Их называют мегаомметрами.

Три приведенных опыта с малогабаритной лампочкой накаливания и батарейкой позволяют показать, что мощность источника энергии и потребителя следует правильно подбирать по нагрузке и напряжению.

1,5 V у батарейки и 6,3 у лампочки - явное несоответствие. Источник работает в аварийном режиме и не справляется с задачей: нить еле-еле светится. Ему искусственно создан режим перегрузки.

Аналогичный случай может произойти и в бытовой сети 220, где , снимающий питание с оборудования с выдержкой времени.

Подключая любой потребитель в электрическую сеть всегда оценивайте его возможность надежной работы и способность защит устранять аварийные ситуации.

Измерения цифровым мультиметром

Замер напряжения

Работа с источниками постоянного тока

Потребуется только установить центральный переключатель в положение замера напряжения на соответствующем пределе (=2 V), вставить провода в гнезда прибора и подключить их к проверяемой батарейке. Результат сразу отображается на табло.

Если полярность подключения источника к мультиметру перепутана, то на табло отобразится знак минус. Значит замер надо повторить, перевернув провода на батарейке.

Этот прием используют для определения полярности источника.

Когда замер выполняется на большем пределе, то точность результата будет занижена. Необходимо соблюдать соответствие величин.

Работа с источниками переменного тока

Вначале переключатель режимов устанавливают в положение «~600 V», а затем проверяют напряжение в розетке.


У нас получился результат 231 вольт.

Замер тока

Мультиметр врезают в цепь тока, предварительно переключив его в режим амперметра и установив на соответствующую позицию измерений. Мы имеем показание 145 мА на пределе 200.


Знак минус перед значением тока свидетельствует о том, что полярность подключения проводов прибора в схему перепутана. Ток через него идет в обратном направлении.

Электрикам, часто сталкивающимися с измерениями, рекомендуем приобрести мультиметр с разъемным магнитопроводом трансформатора тока -клещами. Им удобно выполнять безразрывное подключение и быстрый замер.

Замер сопротивления

Центральный переключатель мультиметра установлен в положение 200 Ω, а результат 9,75 отображен на табло.


Таким же способом прибор работает на шкале kΩ. На приведенном фото даже завышен предел измерения сопротивления. На результате это особенно не сказывается, хоть и влияет.

Режим прозвонки

Цифровой мультиметр в отличие от аналогового стрелочного имеет такую дополнительную функцию. Она позволяет просто определять наличие электрического контакта внутри проверяемой цепи.

В замкнутой и разомкнутой схеме меняется индикация на табло, а у многих моделей приборов дополнительно появляется звуковой сигнал.

Режим прозвонки создан для анализа маленьких сопротивлений, характерных для цепей тока. Но им не стоит пользоваться в цепях напряжения. Особенно он удобен для проверки полупроводниковых элементов.

Еще одна полезная функция для радиолюбителей, называемая на их сленге «пищалкой». Мультиметр выдает высокочастотные сигналы, которые позволяют проверять тракты звуковых усилителей и различные каналы передатчиков или приемников.

У владельцев стрелочных приборов такой функции нет. Они вынуждены делать подобный генератор своими руками.

Проверка транзисторов

Еще одна полезная функция цифрового мультиметра, которая также встречается на более сложных конструкциях стрелочных моделей.

Для проверки биполярного транзистора достаточно правильно вставить его ножки в соответствующее гнездо, учитывающее структуру p-n-p или n-p-n полупроводникового перехода. Для этого создано четыре контактных отверстия, в которые устанавливают ножки за счет поворота корпуса в одну из сторон.

У исправного транзистора сразу высвечивается коэффициент усиления h21.


Эта же функция на стрелочных тестерах требует снятия показаний и выполнения математических расчетов.

Основные правила безопасности

Мультиметр создан для измерения электрических величин и позволяет работать под напряжением. Его корпус и провода выполнены с , так и по нормативам .

Качество защиты цифровых приборов выше, а их дизайн более продуман. Однако, даже при их пользовании следует быть внимательным и осторожным, соблюдать рекомендации производителя.

Любой цифровой мультиметр можно вывести из строя неправильным обращением при его несомненных преимуществах перед стрелочным прибором:

  • работе встроенных защит «от дурака», которые отключают схему от проникновения опасных токов, созданных при всех режимах измерения;
  • повышенной диэлектрической прочности изоляции.

Стрелочные старые тестеры требуют еще больше внимания: при неправильном подключении к цепям токам или напряжения, особенно в бытовой сети 220, элементы их внутренней схемы выгорают. Если калибровочные резисторы еще можно заменить, то с контактами переключателей и кнопок ситуация ремонта усугубляется.

Но чаще всего у них выходит из строя токопроводящая пружинка или обмотка измерительной головки. В этой ситуации ремонт обходится дороже покупки нового цифрового мультиметра.